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Abstract

Solving the task of inverse imaging problems can restore un-
known clean images from input measurements that have in-
complete information. Utilizing powerful generative models,
such as denoising diffusion models, could better tackle the ill-
posed issues of inverse problems with the distribution prior
of the unknown clean images. We propose a learnable state-
estimator-based diffusion model to incorporate the measure-
ments into the reconstruction process. Our method makes ef-
ficient use of the pre-trained diffusion models with computa-
tional feasibility compared to the conditional diffusion mod-
els, which need to be trained from scratch. In addition, our
pipeline does not require explicit knowledge of the image
degradation operator or make the assumption of its form, un-
like many other works that use the pre-trained diffusion mod-
els at the test time. The experiments on three typical inverse
imaging problems (both linear and non-linear), inpainting,
deblurring, and JPEG compression restoration, have compa-
rable results with the state-of-the-art methods.

Introduction
Computational photography strives to produce visually
pleasing images that faithfully depict the original scenes
they represent (Ongie et al. 2020). However, due to phys-
ical limitations such as loss of details during image trans-
mission or out-of-focus when capturing the photograph, the
measurements we obtain may only contain inaccurate or in-
complete information. A wide range of problems, such as
deblurring, deraining, or JPEG compression restoration, at
the heart of computational photography, reduces to the cru-
cial task of solving inverse imaging problems, which aims to
reconstruct unknown images from given measurements (Di-
amond et al. 2017).

Measurements are usually obtained through an image
degradation operator from unknown clean images in the set-
ting of inverse imaging problems. But it is difficult that an
inverse imaging problem is always ill-posed, so multiple im-
ages can fit a measurement even though they do not look
like natural images at all. Utilizing the deep generative prior
is beneficial to solve the ill-posed inverse problems (Pan
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et al. 2020) by adding the constraints to improve the qual-
ity of reconstructed images. Due to the impressive genera-
tive ability brought by denoising diffusion models (Ho, Jain,
and Abbeel 2020; Song et al. 2020; Song, Meng, and Er-
mon 2020; Rombach et al. 2021), applying diffusion models
for inverse problems may enable us to fill in the missing in-
formation with a more powerful knowledge prior about the
distribution of the unknown clean images.

There are two directions in the field of diffusion-based in-
verse problems. Firstly, some works (Saharia et al. 2022b,a;
Rombach et al. 2021) formulate inverse imaging problems
as conditional diffusion models and convert the measure-
ments into the condition embeddings of the diffusion mod-
els. However, this direction is computationally expensive
since the diffusion models must be trained from scratch
when a new inverse imaging task comes. Secondly, some
works (Chung, Sim, and Ye 2022; Lugmayr et al. 2022;
Kawar et al. 2022a; Chung et al. 2022c; Kawar et al. 2022b;
Chung et al. 2022b; Wang, Yu, and Zhang 2022) adjusts
the intermediate state of pre-trained diffusion models at test
time by utilizing the image degradation operator. This di-
rection fails in scenarios where the image degradation op-
erator is unknown. In addition, their reconstruction process
is not convenient for real-world applications, especially for
non-deterministic inverse imaging problems, such as mo-
tion deblurring and inpainting, as their approaches require
the motion kernels or inpainting masks as input. There are
some works (Chung et al. 2022a; Ben Fei 2023) to tackle the
degradation-blind inverse imaging problems with diffusion
models. These approaches need the assumption of the form
of degradation operators. On the contrary, our approach is
degradation-blind, which does not need image degradation
information as a prior.

Our key design is proposing a State Estimator to learn the
way to incorporate the noised measurements into the inter-
mediate state of diffusion models at every timestep. More
specifically, the State Estimator automatically estimates the
weighting mask for the noised measurements and the inter-
mediate state of diffusion models. The output of the State
Estimator varies from different states in order to guide the
diffusion model to the desired region on the data manifold.

With the design of the State Estimator, our model has two
advantages over existing baselines. Firstly, we use less data
and time to train the model compared to the conditional dif-
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Figure 1: The results of our state-estimator-based diffusion model for inverse imaging problems. The image degradation
kernel is not needed in our model. We show some examples of input images and reconstructed images for the typical inverse
problems: (a) Inpainting, (b) Deblurring, (c) JPEG Compression Restoration, and (d) Colorization.

fusion model. We decouple the condition from the diffusion
model with a learnable State Estimator so that we can di-
rectly finetune the diffusion models trained on the unknown
clean data domain, which saves lots of computational re-
sources compared to the way of training from scratch. Be-
sides, we only need to let State Estimator learn the knowl-
edge of the image degradation operator instead of the data
distribution of clean images. Therefore, the training data
used in our framework is much less than the pipeline of
training conditional diffusion models. Secondly, our model
can be applied to more inverse imaging problems where the
image degradation operator is totally unknown or non-linear.
As a comparison, most existing work needs to know the
degradation form, and some works are limited to the gener-
alization of other tasks due to the limits of imputation meth-
ods. For example, DDNM (Wang, Yu, and Zhang 2022) lim-
its their work to linear inverse problems due to the use of
SVD decomposition.

We conduct our experiments on three typical inverse
imaging problems, deblurring, inpainting, and JPEG com-
pression restoration. We evaluate our models on two stan-
dard datasets, FFHQ (Karras, Laine, and Aila 2019) and
LSUN-Bedroom (Yu et al. 2015), which are comparable
to current state-of-the-art models for inverse problems. Our
contributions can be summarized as follows:

• We have developed a degradation-blind framework for
solving inverse imaging problems using a pre-trained dif-
fusion model. This framework can effectively solve both
linear and non-linear inverse imaging problems with only
a few paired samples without requiring explicit knowl-
edge of the image degradation operator or making as-
sumptions about its form.

• We propose a state estimation strategy for pixel-wise
control and produces generative results that are seman-
tically consistent and preserve details.

• We show the effectiveness of our model on three typ-
ical inverse imaging tasks: inpainting, deburring, JPEG

compression restoration, and colorization. Without any
task-specific design, our approach achieves state-of-the-
art results with low latency on all tasks.

Background
An inverse imaging problem aims to reconstruct the un-
known clean image x from the partial measurements y. The
inverse problem can be modeled as

y = A(x) + n, (1)

where A(·) is an image degradation operator and n is the
noise sampled from an unknown distribution (Ongie et al.
2020). The inverse problem is ill-posed. The mapping from
x to y under the setting of the inverse model is many-to-
one. Therefore, we need the image prior p(x) to guarantee
the quality of the results of restoration.

Traditional approaches to inverse imaging problems are
mostly based on images priors, including the dark chan-
nel prior (He, Sun, and Tang 2010), the deep image
prior (Ulyanov, Vedaldi, and Lempitsky 2018), Markov ran-
dom fields (Zhu and Mumford 1997; Geman and Geman
1984; Roth and Black 2005), and GAN-based priors (Al-
bright and McCloskey 2019; Creswell and Bharath 2018;
Karras, Laine, and Aila 2019; Brock, Donahue, and Si-
monyan 2018; Zhu et al. 2016; Donahue, Krähenbühl, and
Darrell 2016).

Diffusion-based inverse problems have begun to thrive
with the impressive generative ability brought by the denois-
ing diffusion models (Ho, Jain, and Abbeel 2020; Song et al.
2020; Song, Meng, and Ermon 2020; Rombach et al. 2021).
One direction in diffusion-based inverse problems is con-
ditional diffusion models (Saharia et al. 2022b,a; Rombach
et al. 2021), which take the noised measurements as the con-
dition embeddings for the diffusion models. Palette (Saharia
et al. 2022a) trains the model on pairs of {x,y}N with the
loss:

Ex0,t,ϵ∼N (0,I)[||ϵ−ϵθ(xt,
√
αty+

√
(1− αt)ϵ, t)||22], (2)
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Figure 2: Overview of our state-estimator-based diffusion model. The output of state estimator is m ∈ Rh×w×1, whose
values belong to [0, 1]. During the training process, the parameters θ of the diffusion denoising model will be fine-tuned, and
the state estimator will be learned from scratch.

where αt is the cumulative variance schedule (Ho, Jain, and
Abbeel 2020). However, this direction is computationally
expensive since they need to train the diffusion models from
scratch conditioning on the measurements.

Another direction (Choi et al. 2021; Chung, Sim, and
Ye 2022; Lugmayr et al. 2022; Kawar et al. 2022a; Chung
et al. 2022c; Kawar et al. 2022b; Chung et al. 2022b; Wang,
Yu, and Zhang 2022; Zhu et al. 2023; Mardani et al. 2023;
Song et al. 2022) is directly adapting the pre-trained diffu-
sion model to inverse problems with the imputation of mea-
surements. Most of these methods need to know the image
degradation operator A(·) at the test time. Denote that x′

t−1

is the output of the reverse process at step t. RePaint (Lug-
mayr et al. 2022) is a simple and effective work with pixel-
wise control to address the inpainting task. They directly use
the mask information m to incorporate the measurements by

xt−1 = m⊙ yt−1 + (1−m)⊙ (x′
t−1). (3)

However, they need to use the resampling mechanism to
boost the performance so that the inference time is signif-
icantly increased. DDRM (Kawar et al. 2022a,b) and its
follow-up work (Wang, Yu, and Zhang 2022) decompose the
measurement operator by SVD. MCG (Chung et al. 2022c)
and its follow-up work DPS (Chung et al. 2022b) utilize the
gradients of ||A(x̂0)−y||22 to adjust the intermediate state of
reversion process, where x̂0 is calculated by the Tweedie’s
formula (Robbins 1992).

There are some works (Song et al. 2021; Chung et al.
2022a; Ben Fei 2023) to tackle the degradation-blind in-
verse imaging problems with diffusion models. Chung et al.
tries to solve the inverse problems in deblurring and imaging
through turbulence. GDP (Ben Fei 2023) restores the mea-
surements by optimizing the degradation models as well as
changing the intermediate state during the denoising pro-
cess. However, these methods need to know the form of
the degradation operator. Recently, some controllable meth-
ods (Zhang and Agrawala 2023; Ma et al. 2023; Chefer et al.
2023) for generative methods have been proposed. Control-
Net (Zhang and Agrawala 2023), is similar to our approach
by finetuning the diffusion models. However, ControlNet is
incapable of maintaining the details of the partial measure-
ments.

Latent diffusion models Instead of working diffusion
models directly on the original image RGB space, latent dif-
fusion models (Rombach et al. 2021) first encode the im-
age into latent space and decode the generated vector into
the original space after the diffusion reverse process starting
from a Gaussian noise zT in the latent space. More specifi-
cally, let us assume that we have an encoder ξ and a decoder
D. An RGB image x ∈ RH×W×3 will be encoded into the
latent space z ∈ Rh×w×c, where z = ξ(x) and x̃ = D(z).
In our work, h = H

f and w = W
f , where f = 4. The value

of c equals 3. Therefore, the loss becomes:

LLDM = Eξ(x0),t,ϵ∼N (0,I)[||ϵ− ϵθ(ξ(xt), t)||22]. (4)

Method

Given a measurement y, our approach aims to learn a func-
tion f(·) to predict the corresponding x in Equation 1. Dif-
ferent from previous work, in our setting, the image degra-
dation operator A(·) is unknown both for the training and
testing period. Our model learns the knowledge of A from
the training data, consisting of pairs of {x,y}, where x ∈ X
and y ∈ Y .

We utilize a learned probability distribution pθ(x) for the
data domain X we aim to reconstruct. Instead of artificially
designing a mechanism to incorporate the noised measure-
ments, we propose a State Estimator to learn the way for
the imputation. The State Estimator extends the flexibility
and generality for different inverse problems and adapts the
conditioning based on the current intermediate states of dif-
fusion models and the noised measurements.

Figure 2 shows the whole overview of our pipeline. The
structure of the State Estimator (SE) consists of a deep neu-
ral network followed by a normalization function. The out-
put of the state-estimator-based model m varies from differ-
ent states of the reverse process. Firstly, we will introduce
our conditioning method via the state estimator to gain a
comprehensive understanding of the reconstruction process.
Then we describe the training framework we use and delve
into the loss function that we have customized in accordance
with the setting of diffusion models.



Conditioning via State Estimator We start the iteration
from the xT ∈ Rh×w×3 in the latent space, which is sam-
pled from Standard Normal Distribution N (0, I). We obtain
our reconstructed image x0 after T iterative steps. For ease
of convenience, we use x as the variable in the latent space
instead of z. Assume that we arrive at step t ∈ T, ..., 1, we
first generate the noise version yt−1 of the latent space of
the measurement y ∈ Y:

yt−1 ∼ N (
√

αt−1ξ(y), (1− αt−1)I). (5)

In addition, we obtain the unconditional intermediate state
x′

t−1 by

x′
t−1 ∼ N (µθ(xt, t),Σθ(xt, t)). (6)

A learned State Estimator SE(·) take x′
t−1, yt−1, and t as

the inputs, and output a state mask mt ∈ Rh×w×1, of which
each value belongs to the range (0, 1):

m = SE(x′
t−1,yt−1, t). (7)

SE is a neural network with the output layer as tanh+1
2 so

that its output is in the space (0, 1)h×w×1. Then an ad-hoc,
called relaxing boundary, is applied to extend the space into
[0, 1]h×w×1. We generate the new intermediate state xt−1

for next iteration by

xt−1 = (1−m)⊙ x′
t−1 +m⊙ yt−1. (8)

More specifically, we use the naive version of U-net (Ron-
neberger, Fischer, and Brox 2015) as our SE function. Our
pipeline requires that the architecture of the state estimator
should keep the dimensions of the input unchanged, and we
want the state estimator to learn a weighting mask. Addi-
tionally, we only use 1k-2k paired images as our training
data for computational efficiency. The property of U-net, ca-
pable of generating high-quality segmentation results with
training on a few samples (Ronneberger, Fischer, and Brox
2015), fits our requirements of the state estimators.

In addition, we claim that the given measurements lose
some information in the field of inverse imaging. For ex-
ample, in the deblurring (Gaussian) task, the details of the
original images have been lost. In the inpainting task, the
content of the masked area is missing. The intuitive way
to let the diffusion prior xt fill in the missing information
is the linear combination with the given measurements. In
other words, for deblurring (Gaussian), the measurements
provide the structure of the image, and the diffusion prior
xt provides the details of the image, which is verified at the
visualization of the outputs of the state estimator.

Training framework and loss function Instead of di-
rectly using the latent diffusion loss to measure the noise in
each step in Equation 4, we propose a new training frame-
work in Algorithm 1, with the loss of calculating the dis-
tances between the restored images and the ground truth im-
ages, which yields better and more stable performance.

Due to the long sequence property, normally at least 50,
of diffusion models, the restored images must be estimated
on the intermediate state xt. As introduced in DDIM (Song,
Meng, and Ermon 2020), we can predict the unknown clean

Algorithm 1: Training
Input: Training samples {x,y}N , truncated steps η, an en-
coder ξ, a decoder D, diffusion models pθ(·) / ϵθ(·) , State
Estimator SEτ (·), a reweight function Υt(·)
repeat

t0 ∼ Uniform(η, ..., T )
xT ∼ N (0, I)
ta, tb = t0, t0 − η
for t = T, ..., tb + 1 do
x′

t−1 ∼ pθ(x
′
t−1|xt)

yt−1 ∼ q(yt−1|ξ(y))
m = SEτ (x

′
t−1,yt−1, t)

xt−1 = (1−m)⊙ x′
t−1 +m⊙ yt−1

end for
x̂0 =

xtb
−
√

1−αtb
ϵθ(xtb

,tb)√
αtb

Only take gradient descent step between steps [ta, tb] on
∇θ,τ Υt(L(D(x̂0),x))

until converged

image x0 based on the intermediate state xt according to the
equation:

x̂0 =
xt −

√
1− αtϵθ(xt, t)√

αt
, (9)

where ϵθ(·) stands for the diffusion function approximator,
which predict noise ϵ from xt. Due to the inaccurate predic-
tion of x0 in the early stage of the diffusion reverse process,
we add a reweight function Υt(·) to the loss in order to de-
crease the penalty when t is large. For each batch {x,y}N ,
the loss will be

L = Ex,t[Υt(L(D(x̂0),x))], (10)

where D is the decoder in latent diffusion models. L is the
weighted loss of MSE and LPIPS.

Although we use the predicted x0 to calculate the loss,
we also face gradient vanishing or exploding issues during
the training process. More specifically, we use Truncated
Back Propagation Through Time (TBPTT) (Williams and
Zipser 1995; Sutskever 2013) to tackle these issues. Algo-
rithm 1 illustrates the details. Denote η to be the truncated
steps we set. The parameters we optimize consist of State
Estimator SEτ (·) and the diffusion model pθ(·). Within a
batch, similar to the diffusion training, we randomly sample
a timestep t0 ∈ Uniform (η, ..., T ). Then we derive xt0−η

from xT ∈ N (0, I) using the latest parameters of models
and detach the nodes before xt0 . Therefore, only the param-
eters falling in steps [t0, t0 − η] will be optimized.

Experiments
Experimental settings
Pretrained models and datasets We utilize the pre-
trained diffusion model to reconstruct the original im-
ages from the measurements. Specifically, we use two un-
conditional models of latent diffusion models (Rombach
et al. 2021; Blattmann et al. 2022) trained on FFHQ
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Figure 3: Examples for inpainting task on FFHQ 256 × 256 and LSUN-Bedroom. Our method is able to complete the
measurements with semantic consistency as well as preserve the details of the unmasked areas.

Methods
Degradation

Blindness
Modeling

FFHQ LSUN-Bedroom
Latency (s)

Votes ↑ LPIPS↓ FID↓ Votes ↑ LPIPS↓ FID↓

MAT (Li et al. 2022) ✔ GAN 36.2% 0.0359 14.595 - - - -
PUT (Liu et al. 2022) ✔ Transformer 42.6% 0.0346 13.921 - - - -
DDRM (Kawar et al. 2022a) ✘

Diffusion

17.6% 0.0579 17.197 34.6% 0.1175 29.186 8.37
Repaint (Lugmayr et al. 2022) ✘ 32.6% 0.0445 12.504 54.2% 0.0816 15.540 272.45
DPS (Chung et al. 2022b) ✘ 31.6% 0.0978 29.521 53.0% 0.1587 22.231 87.33
Ours ✔ Diffusion Reference (50%) 0.0530 12.923 Reference (50%) 0.1074 16.472 5.32

Table 1: Quantitivate results of inpainting task on FFHQ 256 × 256 and LSUN-Bedroom. We have conducted the pair-wise
comparison with our method as the reference. Votes stand for the ratio of votes compared with our method. The p-value of our
user study is smaller than 0.05. Our method has the lowest latency among all the diffusion-based baselines.

256×256 (Karras, Laine, and Aila 2019), and LSUN-
bedroom 256×256 (Yu et al. 2015). We evaluate our perfor-
mance on a held-out dataset with 1000 images, which were
randomly sampled from the validation datasets of FFHQ and
LSUN-bedroom, respectively. We choose three representa-
tive tasks, Inpainting, Deblurring, and JPEG Compression
Restoration in inverse problems, to illustrate the effective-
ness of our methods.

Implementation details The training pairs for each task
in the FFHQ dataset and LSUN-bedroom is 1000 and 2000,
respectively. We train the State Estimator from scratch and
fine-tune the diffusion model. The total step is around 75k
for FFHQ and 150k for LSUN-Bedroom with batch size 4.
We train and evaluate our model on NVIDIA A100 GPU
cards. The learning rate is 0.001 for the State Estimator and
10−6 for the finetuning of the diffusion model. The hyper-
parameter eta for the diffusion model is set to 3.0 both for
training and inference. The truncated step η equals 3.

Evaluation Metrics We report the commonly used met-
rics, the peak-signal-to-noise ratio (PSNR), LPIPS (Zhang

et al. 2018) (AlexNet (Krizhevsky, Sutskever, and Hinton
2017)), and FID (Heusel et al. 2017) as the quantitative met-
rics for all of the inversion tasks.

In addition, we also conducted a user study of 100 images
for the inpainting task. We randomly chose 50 images from
the held-out validation datasets of FFHQ 256 × 256 and
LSUN-Bedroom, respectively. We use MTurk to conduct the
user study. We have set the experiments as the pairwise com-
parison with our method as the reference by asking the ques-
tion ’Which image is more realistic and preserves more de-
tails of the given pixels?’. 10 workers rate every question.
Therefore, there are a total of 2500 votes, with each base-
line totaling 500. Table 1 shows the results of our user study.
The p-value of our user study is smaller than 0.05, which
indicates a significant convince of our results.

Experimental results
Inpainting We compare our method with diffusion-based
models, DPS (Chung et al. 2022b), Repaint (Lugmayr et al.
2022), DDRM (Kawar et al. 2022a) using the public pre-
trained weights on FFHQ and LSUN-bedroom datasets. We



Methods
Gaussian Blur Motion Blur

FFHQ LSUN-Bedroom FFHQ LSUN-Bedroom

PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓

DeblurGANV2 (Kupyn et al. 2019) 26.30 0.1903 41.053 24.88 0.1621 25.177 15.75 0.4282 62.565 12.87 0.5954 61.276
MPRNet (Zamir et al. 2021) 33.42 0.0976 34.927 31.89 0.0987 19.494 20.03 0.3359 69.998 13.03 0.5481 36.048
DPS (Chung et al. 2022b) 25.84 0.1279 27.256 23.59 0.2117 22.491 25.27 0.1371 45.553 25.10 0.1981 50.916
BlindDPS (Chung et al. 2022a) 25.75 0.2476 31.805 21.02 0.3460 30.820 21.49 0.2244 33.675 19.69 0.3118 30.894
GDP (Ben Fei 2023) 25.69 0.1249 26.295 22.97 0.2102 20.847 - - - - - -
Ours 27.98 0.0939 25.453 28.70 0.0700 23.047 25.58 0.1112 25.547 23.81 0.1461 20.659

Table 2: Quantitative results of deblurring task on FFHQ 256 × 256 and LSUN-Bedroom.

(a) Input (b) DPS (c) Ours (d) GT

Figure 4: Examples for deblurring task on FFHQ 256 ×
256 and LSUN-Bedroom. Our method can preserve more
details of the clean images based on blurred images.

also add the GAN-based method, MAT (Li et al. 2022), as
the inpainting baselines. Except for the methods utilizing
the deep generative prior, we add PUT (Liu et al. 2022),
the method of training an end-to-end framework via trans-
formers for inpainting tasks. Since all of the GAN-based and
transformer methods don’t provide the pre-trained weights
on LSUN-bedroom datasets, we compare our methods with
them only on the FFHQ dataset. The box size is set to
100× 100, and the position of the box is randomly assigned
both for the training and testing. The pixels inside the box
are filled with Standard Gaussian noise. Unlike Palatte (Sa-
haria et al. 2022a) only considers the loss of the pixels inside
the mask, we consider the loss for the whole image since the
mask is not used for the whole process.

The quantitative results of the inpainting task are shown
in Table 1. We also compare the inference time with other
diffusion-based methods using an NVIDIA RTX 3090 GPU
in Table 1. Some representative reconstruction results are
demonstrated in Figure 3. Our method can complete the
measurements with semantic consistency for accessories
and keep the details of the unmasked areas.

(a) Input (b) DDRM (c) Ours (d) GT

Figure 5: Examples for JPEG compression restoration on
FFHQ 256 × 256 and LSUN-Bedroom. Our methods have
better quality compared to the baseline in the setting of qual-
ity factor 5.

Deblurring We compare our methods with Deblur-
GANV2 (Kupyn et al. 2019), MPRNet (Zamir et al. 2021),
DPS (Chung et al. 2022b), BlindDPS (Chung et al. 2022a),
and GDP (Ben Fei 2023). For DPS, BlindDPS, and GDP, We
use the public pre-trained weights. We have trained MPRNet
and DeblurGANV2 using our same training dataset, con-
taining pairs of blurred images and clean images. For Gaus-
sian Blur, we use Gaussian Blur with the kernel size 16 and
sigma 2.6. For Motion Blur, we follow the scripts used by
DPS (Chung et al. 2022b), with the kernel size 61 and the in-
tensity value 0. We show the quantitative results in Table 2.
We also show some representative results in Figure 4. Our
method preserves more details of the original images com-
pared to the results of DPS. The results of DeblurGANV2
and MPRNet have artifacts, leading to low PSNR scores.

JPEG Compression Restoration JPEG compression
restoration is important because of the effectiveness and
popularity of the JPEG compression algorithm. The degra-
dation process of JPEG compression is non-linear. We com-
pare our method with the basic JPEG decoder as JPEG,
QGAC (Ehrlich et al. 2020), and DDRM-JPEG (Kawar et al.
2022b) as DDRM for short. For QGAC and DDRM, we use
the pre-trained weights. We train our model on the pairs with
quality factor 5 and evaluate the performance for the qual-
ity factor, both 5 and 10, using the same model weights. We
show the quantitative results in Table 3. We also show some
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Figure 6: Visualization of State Estimators during the reversion process. The yellow indicates that the estimator prefers to
pick the values from the noise version of measurements, and the dark blue indicates that the State Estimator prefers to pick the
values from the intermediate state of the diffusion process.

QF Method
FFHQ LSUN-Bedroom

PSNR↑ LPIPS↓ PSNR↑ LPIPS↓

5

JPEG 24.35 0.3961 23.74 0.3303
QGAC (Ehrlich et al. 2020) 24.99 0.3049 24.02 0.2761
DDRM (Kawar et al. 2022b) 26.25 0.2000 26.02 0.2510
Ours 25.43 0.1237 24.08 0.1682

10

JPEG 27.37 0.2230 26.56 0.2055
QGAC (Ehrlich et al. 2020) 29.47 0.1810 28.63 0.1727
DDRM (Kawar et al. 2022b) 28.91 0.1341 28.43 0.1495
Ours 26.37 0.1068 25.67 0.1347

Table 3: Quantitative results of JPEG compression restora-
tion task on FFHQ 256 × 256 and LSUN-Bedroom.

reconstruction results in Figure 5. Our methods have better
quality compared to the baselines both for quality factors 5
and 10. In addition, the reason why QGAC is slightly bet-
ter than JPEG for QF=5 is that the lowest value of Quality
Factor QGAC can handle is 10 in the paper.

Visualization of State Estimators
Our principle approach is letting the neural network learn
how to incorporate the measurements into the sampling pro-
cess. We show the visualization of the learned State Estima-
tor through timesteps in Figure 6. From the visualization, we
can see that the estimator picks the value evenly from both
sides in the early stage of the reverse process. But in the last
several timesteps, the measurements can only provide partial
information for the reconstructed images. Interestingly, for
deblurring, we could see a rough sketch of images with dark
blue, proving that the diffusion model provides the details of
missing information from the measurement. This estimator
and the format of linear combination provide us with a new
point of view to analyze the choice of State Estimator during
the image restoration process.

Task types
Conditioning methods

Concatenation State Estimator
Inpainting 0.0681 0.0530
Gaussian Blur 0.0848 0.0939
Motion Blur 0.1394 0.1112
JPEG (QF=5) 0.1425 0.1237
JPEG (QF=10) 0.1255 0.1068

Table 4: Ablation study on the conditioning methods. We
report the LPIPS↓ score on FFHQ 256 × 256 datasets.

Ablation Study on Conditioning Methods
We conduct the ablation study on the way of conditioning
on the measurement y. The controlled experiment is that we
directly concatenate y with the intermediate state xt along
the channel. The parameters of channels concatenated are
initialized with zeros and trained from scratch. We evaluate
the LPIPS score for three inverse imaging tasks on FFHQ
testing datasets. From Table 4, we conclude that our state
estimator can achieve high-quality results while keeping the
details of the measurement y on most of the inverse imaging
tasks in this paper.

Conclusion
We propose a unified framework for solving inverse imag-
ing problems using a learnable State Estimator, which au-
tomatically controls the imputation of noised measurements
into the reconstruction process. Our methods show effective-
ness on three inverse tasks: inpainting, deblurring, and JPEG
compression restoration. However, the solution space of the
current method is still limited to the generative ability of dif-
fusion models. The future work is to transfer our framework
to text-to-image diffusion models or utilize domain adapta-
tion techniques to extend the limitation.
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